

II-3 RADIAL-LINE BAND REJECTION FILTERS IN COAXIAL WAVEGUIDES

D. Varon

Bell Telephone Laboratories, Inc.

Among the simplest and least expensive structures which serve as band rejections filters in the microwave region is the coaxial waveguide with a cylindrical cavity forming a discontinuity in the outer conductor, (Figure 1). When the outer conductor of a coaxial waveguide is perturbed by a shorted radial transmission line, the structure acquires a zero of transmission for the TEM mode at a resonant frequency that depends on as many as six parameters. Experience indicates that in restricted regions certain approximate methods, in which one or several of the parameters are neglected, produce fairly accurate results. However, discrepancies of 5% or more are encountered in other regions where the same approximations ought to be valid. The approximations most frequently used correspond to either one of the following situations: (a) total disregard of the fringing fields caused by the two close discontinuities, in which case the cylindrical cavity is represented by a series impedance equal to the input impedance of a shorted radial transmission line [1]; (b) consideration of the fringing fields associated with each discontinuity, but neglect of the inter-action between the two [2]. In the latter, the discontinuities are accounted for by equivalent shunt lumped reactive elements, however, they must be far enough apart so that the interaction is indeed negligible.

The analysis and subsequent results given in this paper are motivated by the objective of gaining further understanding of the relationship between the rejection frequency and the physical parameters of the structure, in particular the width of the cavity. This is accomplished by taking into consideration all the pertinent parameters, neglecting only second order effects such as losses in conductors and dielectrics. As a result, new quantitative data is obtained over a very wide band in the microwave region, where coaxial lines are of practical use.

The analysis includes a representation of the double discontinuity by a symmetric two-port, whose admittance matrix, Y , is derived from a variational principle. Through application of the Rayleigh-Ritz method, the points of infinite transmission loss are computed, by finding the zeros of the y_{12} element of Y .

Families of curves were computed on a normalized basis, with the resonant wavelength, λ_r , in the cylindrical cavity as the natural unit of length. In each one of Figures 2-6, the normalized length of the cavity, $L = (d-b)/\lambda_r$, is plotted against the normalized outer radius of the coaxial line, $B = b/\lambda_r$, for various values of the normalized half-width of the cavity, $H = h/\lambda_r$. Each set of curves is plotted at constant characteristic impedance, Z_0 , of the coaxial line. The results are compared in Figure 7 with an asymptotic curve [1] for $H \rightarrow 0$ which is derived from an analysis which entirely neglects the effect of the fringing fields. This figure together with Figure 8, demonstrates a newly discovered dependence of the resonant frequency on the width of the cavity.

The calculated results are also given in restricted regions by simple formulas of the following general form

$$L = a_0 + a_1 H - a_2 B + a_3 H B$$

The coefficients $\{a_j\}$, $j = 1, 3$ are given in Tables I-III. The calculated rejection frequencies agree within 1% with experimental measurements published by B.C. DeLoach, Jr. [3], also with those performed by the author (Table IV).

References

1. S.A. Schelkunoff, "Electromagnetic Waves", D. Van Nostrand Company, Inc, 1943.
2. J.R. Whinnery, H.W. Jamieson, T.E. Robbins, "Coaxial-Line Discontinuities". Proc. I.R.E., volume 32, November, 1944, pp. 695-709.
3. B.C. DeLoach, Jr., "Radial-Line Coaxial Filters in the Microwave Region", IEEE Trans. on Microwave Theory and Techniques, volume MTT-11, No. 1, January 1963, pp. 50-55.

TABLE I

$Z_0 = 50\Omega$, $\epsilon_g = 1.00$						
ϵ_t	R_H^*	R_B^t	a_0	a_1	a_2	a_3
1.00	I	II	0.363	0.356	0.564	-0.952
1.00	I	III	0.343	0.412	0.364	-1.577
1.00	II	I	0.375	0.219	0.879	3.108
1.00	II	II	0.365	0.322	0.659	0.901
1.00	II	III	0.343	0.429	0.432	-0.329
2.32	I	II	0.361	0.384	0.580	-1.480
2.32	I	III	0.338	0.439	0.306	-1.970
2.32	II	I	0.375	0.220	0.872	3.051
2.32	II	II	0.364	0.389	0.632	0.719
2.32	II	III	0.336	0.482	0.363	-0.874
5.00	I	II	0.359	0.407	0.486	-1.881
5.00	I	III	0.336	0.447	0.269	-2.160
5.00	II	I	0.375	0.221	0.868	2.949
5.00	II	II	0.363	0.335	0.611	0.579
5.00	II	III	0.335	0.464	0.342	-0.810

* $R_H = I$: 0.03 $\leq H \leq 0.05$
 II: 0.05 $\leq H \leq 0.10$

^t $R_B = I$: 0.01 $\leq B \leq 0.05$
 II: 0.05 $\leq B \leq 0.10$
 III: 0.10 $\leq B \leq 0.20$; $L \geq 0.290$

TABLE II

$Z_0 = 50\Omega$, $\epsilon_g = 2.32$						
ϵ_t	R_H^*	R_B^t	a_0	a_1	a_2	a_3
2.32	I	I	0.379	0.145	0.849	1.463
2.32	I	II	0.362	0.280	0.564	-1.085
2.32	II	I	0.376	0.203	0.884	2.166
2.32	II	II	0.361	0.319	0.624	-0.014
2.32	II	III	0.342	0.387	0.437	-0.843

* $R_H = I$: 0.03 $\leq H \leq 0.05$
 II: 0.05 $\leq H \leq 0.10$

^t $R_B = I$: 0.005 $\leq B \leq 0.06$
 II: 0.06 $\leq B \leq 0.11$
 III: 0.11 $\leq B \leq 0.185$; $L \geq 0.285$

TABLE III

$Z_0 = 92\Omega$, $\epsilon_g = 1.00$						
ϵ_t	R_H^*	R_B^t	a_0	a_1	a_2	a_3
1.00	I	I	0.378	0.126	0.873	1.297
1.00	II	I	0.374	0.216	0.805	0.962
1.00	II	II	0.344	0.407	0.450	-1.423
5.00	I	I	0.377	0.150	0.799	0.101
5.00	II	I	0.374	0.201	0.822	1.320
5.00	II	II	0.344	0.375	0.408	-1.397

* $R_H = I$: 0.03 $\leq H \leq 0.05$
 II: 0.05 $\leq H \leq 0.10$

^t $R_B = I$: 0.005 $\leq B \leq 0.070$
 II: 0.070 $\leq B \leq 0.150$

MICROWAVE ELECTRONICS, A Teledyne Company
 3165 Porter Drive, Palo Alto, California
 Traveling-wave Tubes
 Traveling-wave Tube Amplifiers
 Solid State Delay Devices

TABLE IV

$\epsilon_g = 1.00$			$\epsilon_t = 1.00$			
2a	2b	2d	2h	f_c^{\dagger} GHz	f_m^{\ddagger} GHz	$(f_m - f_c)/f_m$ %
in.	in.	in.	in.	GHz	GHz	%
0.217	0.500	6.000	0.772	1.557	1.557	0.00
0.217	0.500	6.000	1.455	1.623	1.622	0.06
0.869	2.000	6.000	1.196	1.829	1.828	-0.05
0.869	2.000	6.000	0.054	1.770	1.767	-0.17
0.869	2.000	6.000	0.802	1.770	1.771	0.06
0.087	0.200	8.000	2.017	1.185	1.186	0.08
0.087	0.200	8.000	0.322	1.133	1.136	0.26
0.869	2.000	6.590	0.724	1.563	1.563	0.00
0.869	2.000	7.749	0.724	1.284	1.285	0.08

[†] Calculated resonant frequency
[‡] Measured resonant frequency

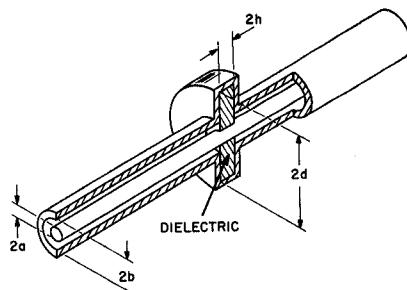


FIG. 1 RADIAL-LINE COAXIAL FILTER

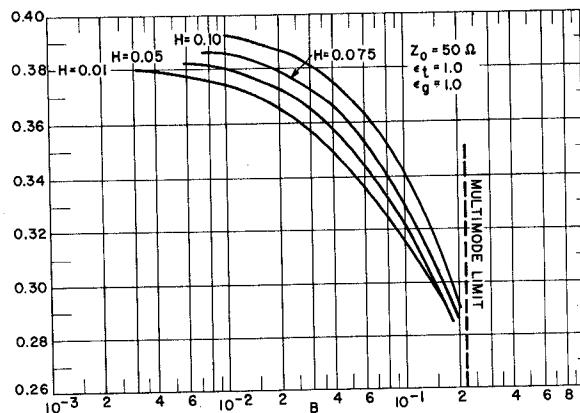


FIG. 2 NORMALIZED CAVITY LENGTH VS NORMALIZED OUTER RADIUS OF COAX

NARDA MICROWAVE CORPORATION
Plainview, N.Y.

Microwave Power Measuring Instruments; Impedance/YSWR
Measuring Devices Attenuation Calibrators; Reflectometer
Cougles Coaxial and Waveguide Attenuators and Couplers
Coaxial and Waveguide Accessories

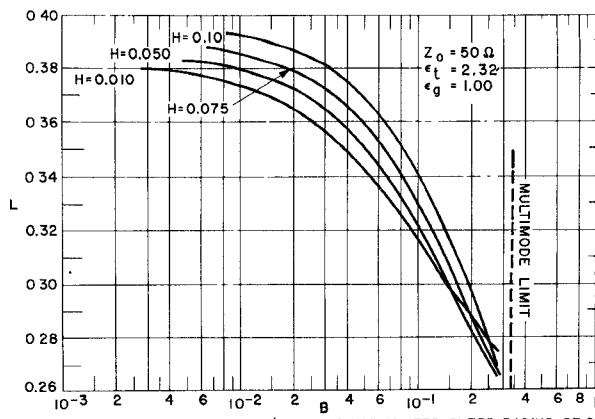


FIG. 3 NORMALIZED CAVITY LENGTH VS NORMALIZED OUTER RADIUS OF COAX

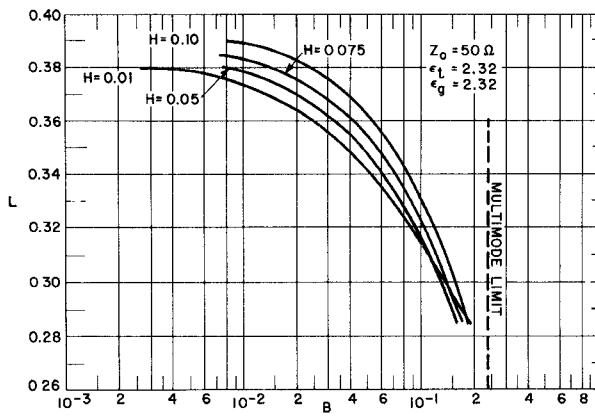


FIG. 4 NORMALIZED CAVITY LENGTH VS NORMALIZED OUTER RADIUS OF COAX

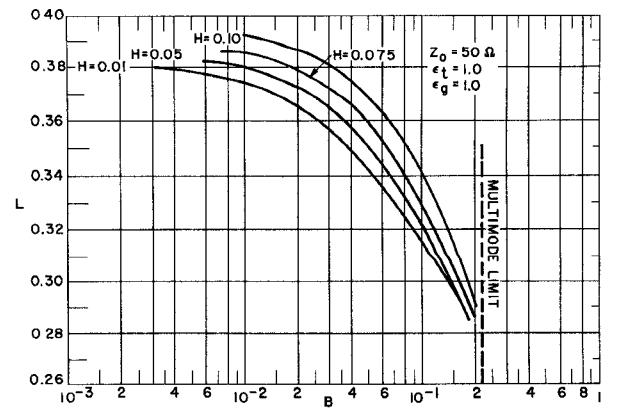


FIG 5 NORMALIZED CAVITY LENGTH VS NORMALIZED OUTER RADIUS OF COAX

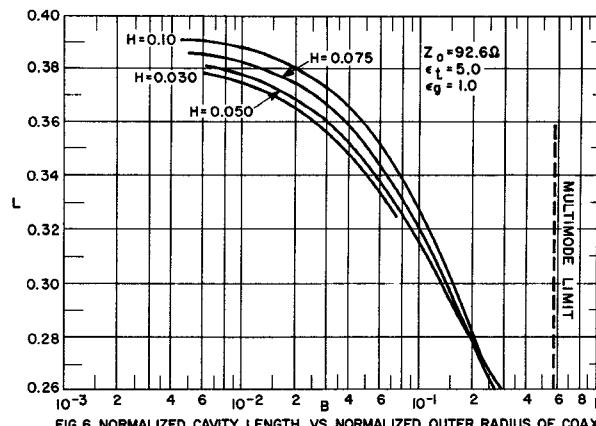


FIG. 6 NORMALIZED CAVITY LENGTH VS NORMALIZED OUTER RADIUS OF COAX

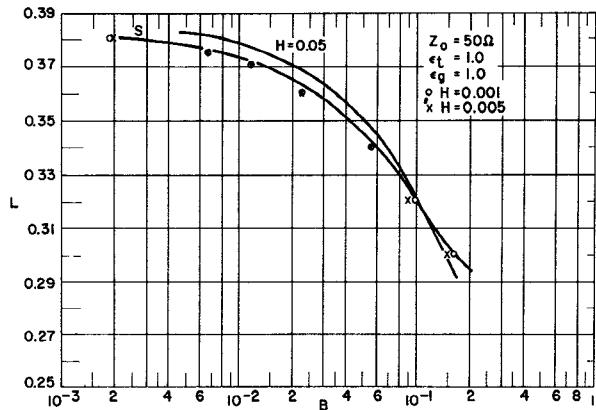


FIG. 7 SCHELKUNOFF'S CURVE (S)- THE ASYMPTOTE FOR $H \rightarrow 0$

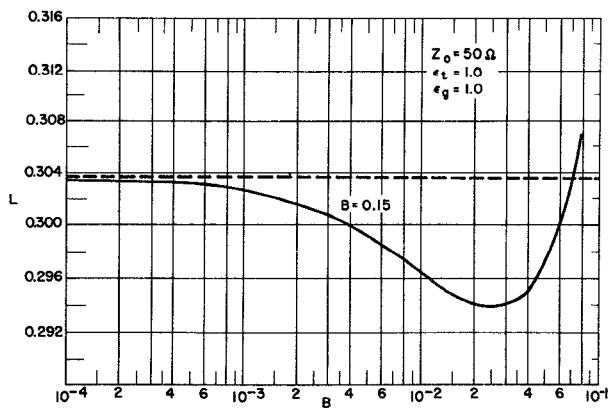


FIG. 8 NORMALIZED CAVITY LENGTH VS NORMALIZED HALF-WIDTH OF CAVITY